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FOREWORD 

A study a t  t he  National Bureau of Standards (NBS), of which 
t h i s  i s  t h e  s ix th  progress report ,  has been undertaken t o  meet t h e  
need of t h e  National Aeronautics and Space Administration (NASA) f o r  
thermodynamic information on biologically re la ted  mater ia ls  important 
t o  t h e  space program f o r  several  reasons,, 
t h e  necessi ty  o f  in fer r ing  t h e  ma~2hun amount of usefu l  chemistry of 
Fncompletely accessible  environments, f o r  which only l imited information 
i s  available,  t h e  poss ib i l i t y  of t h e  occurrence of organic compounds 
na tu ra l ly  synthesized under primitive conditions, and t h e  poss ib i l i t y  
of t heo re t i ca l ly  recovering par t  of t he  prebiological h i s to ry  of t h e  
earth. 

Among these reasons a r e  

This program i s  being carr ied out under the  technical  supervision 
of D r .  George Jacobs of NASA, and with t h e  consultation of 
D r .  Harold Morowitz of t h e  Yale University, Department o f  Molecular 
Biology and Biophysics, and D r .  C. W. Beckett of t h e  Heat Division, 
I n s t i t u t e  f o r  Basic Standards (NBS) 
was Fni t ia ted 1 May 1964 and extended 29 April  1965. 
extended by Amendment 1 f o r  an addi t ional  year, beginning 1 July  1965. 
This report  covers t h e  second quarter of t h e  extended contract .  

The contract (Contract No. R-138) 
The program was 

George ?. Armstrong J 

Supervisory Chemist 
Project Leader 

i 



1, Review of Act ivi ty  During the  Reporting Period 

1,1 Survey and Analysis of  Low-Temperature Heat-Capacity Data 

G. To Furukawa, Mary X. Buresh, and M a  L. Rei l ly  

The low-temperature heat-capacity data on some polyhydroxy compounds 
re la ted  t o  sugars were examined, spec i f i ca l ly  sucrose) glucose, maltose, 
mannitol, lactose,  galactose, and sorbose. Unfortunately, t h e  lower 
temperature limit of these data  is about 6 0 0 ~ ~  
expected Fn any extrapolation t o  OOK. The data  on glycerol, which go 
down a s  f a r  a s  50KI a r e  being examined a s  a possible means f o r  guide 
i n  the  extrapolation. 

A large uncertalnty is  

In addition, t h e  data  on orthophosphoric acid, orthophosphoric 
ac id  hemi-hydrate, urea, furan, &-methionine, and 4-serine were analyzed. 
Further work is in progress. Tables of thermodynamic propert ies  on these 
substances a r e  expected t o  be ready during the  next quarter.  

Survey of heat-capacity data on water, carbon dioxide, and ammonia 
was continued. Approxbately 100 addi t ional  papers were examined. 

A survey of  t he  vapor-pressure data on the  amino acids  was made. 
A preliminary sumnary i s  given elsewhere in t h i s  report .  
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1.2 Surveys of Heats and Free Energies of Formation 

G. T. h t r o n g  and M. N. Inscoe 

During t h e  reporting period covered by the  present report  t h e  l i t e r a -  
t u r e  search f o r  data  on t h e  ubiquitous biological  compounds was contkued. 
As  a r e su l t  of t h e  l i t e r a t u r e  survzy thus f a r  t h i s  f i l e  now contains 
521 papers dealing with heats  of react ion and equilibrium processes. 
This does no t  include mater ia ls  re fer r ing  t o  inorganic compounds. 

Relatively few s tudies  a re  made of heats  of vaporization which a r e  
generally needed t o  ca lcu la te  t h e  thermodynamic propert ies  of t he  vapors 
when only the data f o r  t he  condensed phase have been determined, On t h e  
other  hand, vapor pressure data a r e  commonly reported and can be used t o  
ca lcu la te  the thermodynamic changes on evaporation. Attached t o  t h i s  
report  (Section 2) a r e  c r i t i c a l  reviews of t h e  vapor pressures of two 
extremely important compounds Fn t he  f i e l d  of exobiology, methane and 
ammonia. 
down t o  t he  lowest reported vapor pressures f o r  each substance. 
t ion ,  in section 3 i s  presented a review of  t h e  vapor pressures of amino 
acids. 
za t ion  of the amino acids. In  addition, the  mater ia l  contained i n  these 
reviews, a substant ia l  body of c r i t i c a l l y  evaluated thermodynamic and 
vapor pressure data on alcohols was received, which represents  t h e  work 
of t h e  thermodynamics group a t  t he  Texas A and M University. 
a s  t o  t h e  best way t h i s  mater ia l  can be made use of i n  t h i s  project is 
st ill under considerat ion. 

These reviews cover t h e  vapor pressures from t h e  c r i t i c a l  point 
In addi- 

This review reveals  a great lack of information about t h e  vapori- 

A decision 

2.1 Vapor Pressure of Methane 

George T. Armstrong 

In table  1 a r e  found selected values f o r  t h e  vapor pressure of 
methane from 51°K t o  t h e  c r i t i c a l  point 190.6OK. These values a re  
obtained f rom a c r i t i c a l  review of t he  l i t e r a t u r e  p r io r  t o  1955 [l]. 
A br ief  review of t h e  sources is  given below. A complete and de ta i led  
review of  the data  i s  given i n  Reference 1. The values found in t a b l e  1 
were calculated using equation (1) f o r  t h e  so l id ,  equation (2) f o r  t h e  
l iqu id  range below t h e  normal boiling point, and equation (3) f o r  t he  
l iqu id  above the normal boiling point. 

Loglo P(Torr) = 7.69540 - 532.20/(T + 1.842) (1) 

Loglo P(Torr) = 6.61184 - 389.93/(T - 7.16) (2) 

Loglo P(Torr) = 10.68631 - 595.546/T - 0.0348066T 

+ 0.00013338T2 - 1.7869 x T3 (3)  
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The vapor pressure of so l id  methane has been measured by Hunter [21, 
Henning and Stock [3], Karwat [AI ,  Freeth and Verschoyle [51, Tichner 
and Lossing [61 and Brickwedde and Scott [l]. 

The t r i p l e  point is  a fixed point through which both t h e  vapor 
pressure functions f o r  t h e  vapor and the  l iqu id  pass. 

Wiebe and Brevoort [ 111 , Freeth and Verschoyle [ 51 , Fischer and Klem [ 121 
Kruis, Popp 
Clusius [151, Brickwedde and Scott  [l], Clusius and Wiegand [16I, and by 
Staveley and Gupta [17], The value obtained by Brickwedde and Scott  f o r  
t h e  t r i p l e  point temperature was selected a s  t he  best  value and a value 
of  87.50 Torr f o r  t h e  t r i p l e  point pressure was selected as  representat ive 
of t h e  accurate determinations reported between 1931 and 1949. 

Independent 
determinations of t h e  t r i p l e  point were made by Olsaewski 71, Hunter [21, 
Crommelin [6], Henning and Stock [3], Eucken and Karwat [9 , Clusius [lo] 

and Clusius [ 131, Clusius, Popp, and Frank [ l4] , Frank and 

The vapor pressure of l iquid methane has been measured byWckwedde 
11, Tichner and Lossing [6], Henning and Stock [31, , Wroblewski [19], Freeth and Verscho l e  [ 5 I ,  Karwat [ A I ,  

Eucken and Berger [20], Cardoso [21], Volova [22 T , Clusius [16], 
Clusius and Wiegand [22], Keyes, Taylor, and Smith [23], and by Bloomer 
and Parent [a]. 

The normal boi l ing temperature as a p a r t i m l a r  p o h t  OE t he  vapor 
pressure f h c t i o n  of t h e  l iqu id  was measured by Olszewski [ ? I ,  Hunter [2], 
Henning and Stock [3], Keyes, Taylor and Smith [23], Cragoe [18] , and 
by Brickwedde and Scot t  [l]. 
by rounding t h e  value of Brickwedde and Scott ,  

The selected value i s  111.67OK, obtained 

The c r i t i c a l  point a s  a part icular  point on t h e  vapor pressure 
funct ion of t h e  l iqu id  was measured by Dewar [25], Wroblewski [19I, 
O l s z e ~ ~ s k i  171, Cardozo [21], Keyes, Taylor, and Smith [23], Bennewita 

values  of recent determinations of the c r i t i c a l  temperature and pressure 
were selected a s . t h e  best  values, 

0 and Andreev €261, and by Bloomer and Parent [&] , A p p r o i 5 ~ ~ + ~  v u  - I ) ” - -  a~r-aae 

Equations (1) and (2) pass through t h e  selected temperature and 
pressure of t h e  c r i t i c a l  point, and equations (2) and (3) give the  same 
temperature f o r  t h e  normal b o i l b g  point. 
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Table 1 

Vapor Pressure of Methane 

T'K 

Solid 

51 
55 
60 
65 
70 
75 
80 
85 
90 

P (Torr ) a T OK 

0 . 0042 

00215 
1229 

8 541 
18939 
5.88 

15 58 
36-90 
79855 

Triple  PoFnt 

90 . 66 87.50 (Tt) 

4 

Liquid 
95 

100 

105 
110 

111.67 
115 
120 

125 
130 
13 5 
U.0 

l-45 
150 

155 
160 
165 
170 

175 
180 
185 
190 
190.6 

P (Torr) 

U8.85 
258.12 
423 12 
661.01 
76OeO0 (Tb) 

993 828 
l.4.4086 
2023 89 
2766 1 
3691.3 
4824.0 
6190 1 
7816.0 
9729 5 

11959 
u535 
17489 
20851 
24656 
28937 
33728 
34656 (Tc) 
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2.2 Vapor Pressure of Ammonia 

George T. Armstrong 

In  t a b l e  2 a r e  found selected values f o r  t he  vapor pressure of 
These values a re  

A complete and detai led 
The values found in 

ammonia from 173OK t o  t h e  c r i t i c a l  point 405.6OK. 
obtained from a c r i t i c a l  review of t he  l i t e r a t u r e  p r io r  t o  1953 [1l0 
A br ief  review of t h e  sources is  given below. 
review o f  t h e  data  i s  given in Reference [ 11 . 
t a b l e  2 were calculated u s h g  equation (1) f o r  t he  sol id ,  and equation ( 2 )  
f o r  t h e  l iqu id  range below 250OK. 
i s  given i n  Reference [l]; the  selected values in t h a t  region a r e  taken 
f r o m  a smooth curve drawn through t h e  various reported data  points. 

Above 250°K, no ana ly t i ca l  expression 

Loglo P ( T o r r )  = 9.98379 - 1627.22/T 

Loglo P ( T o r r )  = 9.95028 - l473.17/T - 0.0038603T ( 2 )  

Tne vapor pressure equation f o r  so l id  ammonia was derived from data 
of Karwat [ 21 , Postma [ 31, McKelvey and Taylor [4] . 
deviation of t h e  pressures of t he  experimental points from t h e  equation 
i s  about 0.75 percent. 

The mean absolute 

The t r i p l e  point i s  an invariant point on the  phase diagram, and s o  
t h e  pressure and temperature can be selected separately from the  avai lable  
data. The value of -77.70°C (195.46"K) reported by Crsgoe, Megers, and 
Taylor [6] was selected a s  t h e  best value f o r  t h e  t r i p l e  point tempera- 
ture .  For t h e  t r i p l e  point 
by Overstreet and Giauque [ 5  P was selected. Many other measurements of 
t h e  t r i p l e  point temperature and/or pressure have been reported and a r e  
l i s t e d  in Reference [I], 

ressure  t h e  value of 45.58 t o r r  reported 

The equation f o r  t h e  vapor pressure of t he  l iqu id  below 250°K 
(eq. (2 ) )  i s  based upon experimental determinations reported by Postma [3], 
Bergstrom [7], H o l s t  [SI, Cragoe Meyers, and Taylor [61, Overstreet and 
Giauque [5] ,  Smits and Postma [SI ,  Taylor and Jungers [ lo] ,  McKelvey and 
Taylor [4], and by Henning and Stock [ll]. 
f rom equation (2) of a l l  t h e  vapor pressures reported from these sources 
i s  0.3 percent. The equation f o r  the vapor pressure of t h e  so l id  inter-  
s e c t s  t h e  equation f o r  t he  vapor pressure of t h e  l iqu id  a t  t h e  selected 
t r i p l e  point temperature and pressure. 

The mean absolute deviation 

7 



Above 250OK t h e  values l i s t e d  in t a b l e  2 were selected from a smooth 
curve through t h e  data of Keyes [12], Cragoe, Meyers, and Taylor [ 6 ] ,  and 
of Beat t ie  and Lawrence [13l0 
The mean absolute deviation of t he  pressure i s  l e s s  than 0.03 percent. 

The data above 250°K a r e  very concordant. 

The normal boiling point and t h e  c r i t i c a l  point a s  special  points  
on t h e  vapor pressure function have been reported by numerous observers 
whose reported values a r e  l i s t e d  in Reference [l]. The selected values 
l i s t e d  here were obtained i n  Reference [l] by a process of averaging t h e  
l i s t e d  values. 

Nmerous other s tudies  have been rep3rted of t h e  vapor pressure of 
ammonia, i n  addition t o  those from which t h e  selected values were taken. 
These reported p r io r  t o  19U were considered t o  be of h i s t o r i c a l  i n t e re s t  
only because of l e s s  accurate measuring instruments o r  of l e s s  pure 
amonia than were used In l a t e r  studies.  
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Table 2 

T O K  

S o l i d  

173 
175 
180 
185 
190 
195 

Vapor Pressure of Ammonia 

a 
P(Torr) 

3.78 
4.85 
8.78 

15.42 
26.27 
43 57 

Tr ip le  Point 

195 e46 45 58 

Liquid 
200 
205 
210 

215 
220 
225 
23 0 

23 5 
239.78 
240 

a5 
250 
255 
260 

265 
270 

275 
280 

64.92 
93.91 

133 . 21 
185.51 
253 e97 
342 20 
454.28 
594 70 
760.00 (Tb) 

768.43 
980.78 

1237.5 
1546 9 
19U.8 
2348 . 9 
2857.1 

3 U 8  1 
4130eO 

TOK 

285 
290 
295 
300 
305 
3 10 
3 15 
3 20 
325 
330 
33 5 
340 
345 
3 50 

355 
360 
365 
3 70 
375 
3 80 

385 
3 90 

395 
400 

405 
405.6 

P(Torr) 

Liquid 

4912.5 
5804 . 2 
6815.1 
7956.6 
9238.7 

10,668.5 
12,261 
u,028 
15,988 
18,135 
20 ,498 
23,089 
25,919 
23,999 
32,344 
35,973 
39,906 
44,m 
48,702 
53,593 
58,871 
64,558 

77,334 
84,513 
85,400 

70,697 

A T o r r  is 1/760 atm. a 
9 
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3.1 Vaporization and Vapor Pressure of Amino Acids - 
George T. h k a w a  

A s  a par t  of t h e  l i t e r a t u r e  survey of t h e  vapor pressures of amino 
acids,  t h e  nature of t h e  condensed phase o r  t h e  c r y s t a l  s t ruc ture  of 
t h e  simplest of these substances was f i r s t  investigated. 

The amino acid molecule has in general an e l e c t r i c  dipole o r  
zwitter-ion configuration with t h e  posi t ive and negative charges 
separately centered about t h e  nitrogen and oxygen atoms, respectively: 

A polypole s t ruc ture  i s  assigned t o  the  more complex amino acid molecules, 
e.g., cystine. 
CH2NH2COOH) a r e  held together by these e l ec t ros t a t i c  forces  and by 
hydrogen bonding between t h e  adjacent nitrogen and oxygen atoms [l]. 
Glycine, t h e  simplest amino acid, exhibi ts  a double molecular layer  
s tmc tu re 'w i th  r e l a t i v e l y  weaker van der  Waals forces  between t h e  d i f fe r -  
ent double layers. 
between t h e  different double molecular layers. 
dis tances  within t h e  s ing le  layer are 2.76 and 2.88 A; while between t h e  
same double layer  they a r e  2.93 and 3.05 A [l], Indicating t h a t  t h e  inter-  
molecular forces  between t h e  two layers a r e  d i f fe ren t  from those within 
t h e  same layer. 

I n  t h e  c rys t a l l i ne  s ta te ,  t h e  molecules (e.g., glycine, 

The c r y s t a l  can, therefore,  be cleaved i n  t h e  plane 
The @.trogen-oqgen 

The c r y s t a l  s t ruc ture  of t h e  next simplest amino acid, dt-alanine 
(CH3CH?Z$OOH): i s  much more complex than t h a t  of glycine. 
de-alanine cannot be cleaved in  any di.re&hii, F;liizatLcg t,he alanine 
molecules t o  be bound t i g h t l y  In a three-dimensional network. 
examination [2] has shown t h i s  t o  be indeed so with t h e  molecules bound 
in a chain by e lec t ros ta t&c forces  and hydrogen bonds between t h e  nitrogen 
and oxygen atoms a t  2.78 A distance, 
bound t o  adjacent chains in a three-dimensional configuration by hydrogen 
bonds between $he nitrogen &id oxygen atoms of adjacent molecules a t  
2.84 and 2.88 A distances. 
be d i f f e ren t  from t h a t  of dL-alanine just described. 

Crystals of 

X-ray 

The molecular chalns a r e  in tu rn  

The c rys t a l  s t ruc ture  of d- o r  L-alanine may 

The invest igat ions of Bernal [ 3 ]  on a number of amino acid c rys t a l s  
reported occurrences of polymorphism depending upon t h e  r e l a t i v e  posit ions 
of the molecular chains. 
x-ray d i f f rac t  ion analyses on glycine and dk-alanine described above suggest 

These observations together with t h e  de ta i led  



r e l a t ed  c rys t a l  s t ruc tures  but of greater  complexity with polymorphism 
f o r  the  other amino acids. 
c a r e f i l l y  correlated with c rys t a l  s t ruc ture  a t  t he  temperature of t he  
vapor-pressure measurement 

Any vaporization data should, therefore ,  be 

The higher dens i t i e s  of the  amino acids  a l so  suggest a more t i g h t l y  
bomd s t ruc ture  than the  hydrocarbons. 
temperature of  amho acids  a r e  i n  t h e  range 1.4 t o  1.7 g/cm3, while 
those of sol id  a l ipha t i c  hydrocarbons a r e  around 0.7 t 

The dens i t ies  a t  around room 

0.8 g/cm3 and 
of aromatic hydrocarbons around 0.9 t o  1.0 o r  1.1 g/c s 

Because of t h e  r e l a t i v e l y  low vapor-pressure of arriino acids,  
vapor-pressure data on these substances a r e  almost non-existent. 
sublimation experiments of Gross and Grodsky [.4] indicate  t h a t  most of 
these substances can be vaporized without decomposition. Ea r l i e r  
Brown [ 51 found &-proline, &-leucine, iso-valine, A-phenylalanbe, 
d-alanine, glycine, iso-leucine, glutamic acid, tryptophan, oxyproline, 
&-serine, and &-tyrocine t o  sublime, but not d-arginine, d-aspartic 
acid,  o r  h i s t id ine .  The fo l lowing  i s  a p a r t i a l  l i s t  of substances with 
which Gross and Grodsky conducted sublimation experiments. 

The 

Vaporization Data on Amino Acids and Related Substances 
(From Gross and Grodsky [ 4 ] >  

Tenperature 
Sub stance Vaporization Temperature Range of Vaporization Recovery 

OC OC % 
& -a lanine 
&- e t  hion ine 
&-hydroqy proline 
L-isoleuclne 
&-leucine 
&-methionine 
&-phenylalanine 
&-proline 
&-threonine 
& -tryptophan 

-tyrosine 
L-valine 
&-aspartic acid 
&-cysteine 
&-his t idine 
&-lysine 
&-serine 
glycine 
p-alanine 

138 
133 
150 
105 
109 
130 
130 
119 
170 
180 
186 
102 

124 

118 
111 

12 

193-200 
196-216 
190-223 
170-181 
180-188 
197-208 
176-181, 
182-187 
230-226 
220-230 
23 5- 24.0 
178-188 
230-237 
170- 180 

200 
160 

160-170 

1'70- 180 
U5-150 

98.5 
99.1 
99.1 
99.7 
99.1 
99.8 
98,2 
99 04 
99.6 
99eO 
9902 
99.5 

97.5 

99.0 
98.2 



A vacum of 0.3 mm Hg was usedo 
mined by ra i s ing  t h e  temperature a t  a r a t e  of about one degree per 
minute and the  sublimation was complete in about two t o  th ree  hours in 
each experiment . 
t h e  i n i t i a l  temperature a t  which sublimation was evident and t h e  column 
designated "temperature range of vaporization" gives t h e  temperature 
where most of t h e  mater ia l  sublimed without apparent decomposition. 

The sublimation temperature was deter- 

The column designated I'vsporization temperature" gives 

&-Histidine, &-serine, and L a s p a r t i c  acid gave low recovery, 
vaporized slowly, darkened extensively, and yielded glass- l ike subli- 
mates. &-Lysine sublimate showed i m p u r i t y  phases. Gross and Grodsky [ & I  
found L-arginine, &-asparagine, L-citrulline, &-cystine, Prdibdotyrosine, 
k-glutamic acid, &-glutamine, glutathione, and t a r i n e  t o  decompose when 
subjected t o  the  sublimation process, 
Tolbert [61 found glycine t o  form the diketopiperazine! 

Ear l ie r ,  Ostwald, Adams, and 

o = c  ;c = 0 

NH - CH2 \ 

but  not alanine. 
t i o n  with glycine or  with any of the substances given in t h e  above tab le ,  

Gross and Grodsky [ & I  found no diketopiperazine forma- 

Takagi, Chihara and Seki [ 7 ]  investigated the  vapor pressure of t h e  
a form of glycine c r y s t a l  in t h e  range 139 t o  1 5 3 O C  using t h e  Knudsen 
e f f i s ion  method. 
These values a r e  considerably lower than the  vapor pressure suggested 
f o r  glycine (0.3 mm Hg a t  1 1 8 O C )  i n  t h e  sublimation experiments of 
Gross and Grodsky [ 4 ] .  This may be due t o  possible dlfferences in 
c rys t a l l i ne  forms used. 
f o r  t h e  heat of sublimation of a-glycine from t h e i r  vapor-pressure 
measurements. 
t h e  heats  of vaporization of t h e  hydrocarbons. 
on t h e  basis  of t h e  value of t h e i r  calculated heat of vaporization, t h e  
vaporization process t o  be from zwitter-ion in t h e  c r y s t a l  t o  molecular 
form i n  t h e  gas. 
t o  require about 103 kcal/mole. 

The pressure ranged from 1.3 t o  4.4 x 10-3 mm Hg. 

Takagi et a l .  calculated 31-18 fO.49 kcal/mole 

A s  t o  be expected t h i s  ~8l.v-e is  comparatively higber than 
Takagi & a. [7J suggest, 

They consider ewitter-ion(c) t o  zwitter-ion(g) process 

I n  none of t h e  vaporization experiments mentioned was t h e  nature 
of t h e  vapor species determined. 
of t h e  amino acid molecule, a dimer molecule in t h e  vapor phase does 
not seem unlikely. 
Ostwald e t  a l .  [ 6 ]  is  an extreme case of dimerization i n  which a condensa- 
t i o n  react ion occurred. 

Because of t h e  zwitter-ion s t ruc ture  

Diketopiperazhe found in t h e  glycine sublimate by 

13 



This preliminary l i t e r a t u r e  survey has revealed a lack of accurate 
The data  t h a t  a r e  vsporization and vapor-pressure data on amino acids. 

avai lable  show t h a t  most of these substances can be sublimed without 
decomposition. 
method t o  check on vapor species) a r e  su i tab le  f o r  vapor-pressure 
msasurements. 
c r y s t a l  and vapor phases, respectively,  a r e  e s sen t i a l  in characterizing 
t h e  system being investigated. 

Knudsen effusion and r e l a t ed  methods (e.g. , to rs ion  

X,-ray and mass spectroscopic examinations of t h e  
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